Разработка учебного кейса по теме: «Источники и потребители электрической энергии. Электрические цепи»методическая разработка по технологии (5,6,7,8 класс) по теме

Параметры потребителей электроэнергии

Но прежде, чем мы приступим к рассмотрению новой темы, давайте вспомним, что называют потребителем электрической энергии.

Итак, мы с вами уже говорили, что приёмник

или
потребитель
– это устройство, в котором происходит преобразование электрической энергии в другие виды энергии для её использования – например, осветительные лампы, электрические обогреватели, двигатели.

В электротехнике такие устройства называют нагрузкой

.

Также напомним, что источник электрической энергии

,
нагрузка
и
соединительные провода
– всё вместе это называется
электрической цепью
.

В основном все электрические цепи состоят из нескольких потребителей электроэнергии.

Но некоторые из этих потребителей, например, провода, выключатели и устройства защиты, потребляют совсем небольшое количество энергии, если сравнивать с главным потребителем, который выполняет некоторую работу. Именно этот главный потребитель и определяет режим работы электрической цепи.

Источник электроэнергии предоставляет потребителю энергию с определёнными параметрами. Эти параметры обязательно должны соответствовать параметрам потребителя, иначе потребитель не будет работать и в скором времени выйдет из строя.

Важно понимать, что систематическое, даже самое небольшое, превышение допустимых параметров может привести к преждевременной поломке электрического устройства в процессе эксплуатации.

Первым самым важным параметром потребителя электрической цепи является его электрическое сопротивление

.

Давайте попробуем разобраться, что же это такое – сопротивление

.

Проводники могут иметь одинаковый размер, но быть изготовлены из разных металлов.

И при подключении к одному и тому же источнику тока такие проводники будут совершенно по-разному себя вести, по-разному сопротивляться движению зарядов, и проводить разной силы ток.

Итак, электрическое сопротивление

– это не что иное, как противодействие всей электрической цепи или отдельных её участков прохождению электрического тока.

Сопротивление измеряется в омах

– в честь немецкого учёного Георга Ома.

Отсюда получаем, что величина сопротивления напрямую зависит от размеров и материала проводника. Вообще, сопротивление электрического проводника тем больше, чем он длиннее, чем меньше его поперечное сечение и чем хуже материал проводит электрический ток.

На принципиальных схемах проводник, обладающий электрическим сопротивлением, принято изображать в виде прямоугольника и обозначать латинской буквой R.

Напомним, что соединение проводников может быть последовательным

или
параллельным
.

При последовательном соединении проводников с разным сопротивлением общее электрическое сопротивление будет равно сумме их электрических сопротивлений.

Что касается параллельного соединения проводников, кстати, именно этим соединением подключают потребителей электроэнергии в быту и на производстве, то здесь надо знать, что общее сопротивление всех потребителей уменьшается, а сила тока источника увеличивается. При этом возрастает опасность перегрузки сети, что может привести к пожару.

Следующим не менее важным параметром нагрузки электрической цепи является проводимость

.

Вообще, под проводимостью

принято понимать величину, которая обратна сопротивлению проводника. При параллельном соединении проводников общая проводимость будет равна сумме их проводимостей.

Ещё одним параметром потребителей электрической энергии является напряжение

.

Вообще, под напряжением

понимают работу, которую совершает источник электрического тока по перемещению единицы электрического заряда через нагрузку с сопротивлением R. Обозначается напряжение латинской буквой U и измеряется в
вольтах
– в честь итальянского физика АлессАндро Вольта.

Со школьного курса физика вам хорошо знаком закон Ома. Из него вытекает, что протекающий через проводник или потребитель ток тем сильнее, чем больше напряжение и чем меньше сопротивление.

Именно этим законом руководствуются при передаче электричества по линиям электропередач, так как одним из важнейших требований к линиям электропередачи является уменьшение потерь при доставке энергии потребителю.

И последним параметром, о котором мы сегодня поговорим, будет мощность

.

Вообще, мощностью

называют работу, которую совершает источник тока в единицу времени, по перемещению определённого электрического заряда через потребитель. Мощность измеряется в
ваттах
– в честь английского изобретателя Джеймса Уатта. Мощность оборудования зависит как при постоянном токе, так и при переменном токе от действующих значений напряжения и силы тока.

Во всех параметрах потребителей электроэнергии, которые мы сегодня назвали: а это сопротивление, проводимость, напряжение и мощность, обязательно нужно разбираться. Ведь эти знания помогут вам грамотно пользоваться электроэнергией и сохранить вашу жизнь и здоровье в безопасности.

Вы должны были слышать, что проводник в электрической цепи из-за действия электрического тока может нагреваться. При нагревании проводника из любого металла происходит его окисление, при этом его сопротивление начинает увеличиваться, что впоследствии приводит к плавлению проводника и его разрушению. Поэтому для любого потребителя, для провода или любого другого элемента электрической цепи существует максимально допустимая мощность

. При такой мощности проводник может довольно долго работать без каких-либо осложнений.

Если произойдёт превышение максимально допустимой мощности, то со временем любой элемент электрической цепи начинает разрушаться.

Все основные параметры потребителя обязательно наносят на корпус изделия: это рабочее напряжение, потребляемая мощность или сила тока.

Зная их, можно сразу же понять соответствует ли электроприбор параметрам остальных элементов электрической цепи.

Так, например, параметром проводов и вспомогательных элементов (выключателей, розеток, вилок, ламповых патронов) является максимально допустимая мощность, которую обязательно указывают на корпусе этих элементов. В техническом паспорте на провод обязательно будет записана величина его площади сечения и допустимая сила тока.

Итоги урока

На этом уроке мы обсудили основные параметры потребителей электроэнергии. Узнали, что к этим параметрам относятся электрическое сопротивление, проводимость, напряжение и мощность. В параметрах потребителей электроэнергии, которые мы сегодня рассмотрели обязательно нужно разбираться. Так как эти знания помогут сделать пользование электроэнергией грамотным и безопасным для вашей жизни и здоровья.

Источники и потребители тока в транспортных средствах. Стартер

Электрооборудование обеспечивает работу большин­ства систем автомобиля и снабжает током потребите­ли электроэнергии.

К потребителям электрической энергии относятся:

  • система пуска двигателя (стартер);
  • система зажигания (у бензиновых и газовых дви­гателей; описание и работа этой системы рассмотре­ны в главе 2 настоящего издания);
  • система освещения (снаружи машины — фары и фонари, лампы освещения номерного знака, внут­ри — плафоны, лампы, освещающие приборный щи­ток, подкапотное освещение и т.д.);
  • система световой сигнализации (указатели поворо­та, стоп-сигналы, фонари заднего хода);
  • система звуковой сигнализации;
  • контрольно-измерительные приборы (амперметр, указатель температуры охлаждающей жидкости, сигнализатор включения стояночного тормоза и т.д.);
  • дополнительное оборудование (вентилятор, конди­ционер, стеклоочиститель, магнитола, прикуриватель, система обогрева заднего стекла, электростеклоподъ­емники, электронные системы, повышающие безопас­ность эксплуатации транспортного средства, а также многие другие приборы, которые вы можете подклю­чать через гнездо прикуривателя).

Работу всех перечисленных потребителей тока обес­печивают всего два источника электрической энергии: генератор и аккумуляторная батарея

Генератор

Главный источник электроэнергии — генератор, приводимый в действие двигателем транспортного средства. Он преобразует механическую энергию дви­гателя в электрическую. Вал автомобильного генера­тора через ремень посредством шкива соединяют с вращающимся валом двигателя, и работающий дви­гатель «заставляет» генератор вырабатывать ток. Ге­нератор состоит из элементов, показанных на рисунке

Устройство генератора: 1-корпус генератора; обмотка статора; 3-ротор; 4-ремень; 5-шкив привода генератора; 6-кронштейн крепления; 7-щетки; 8-регулятор напряжения; 9-контактные кольца; 10-вывод «30″ для подключения потребителей; 11- вывод «61″ для питания цепи амперметра и контрольных ламп на щитке приборов; 12-выпрямитель

Автомобильный генератор устанавливают на двига­теле на специальном кронштейне. Надежная работа генератора зависит от степени натяжения ремня привода (регламентируется заводом-изготовителем). Натяжение регулируется перемещением генератора в пазах кронштейна.

При работающем двигателе генератор питает элек­трическим током все потребители, а также подзаря­жает аккумуляторную батарею.

Как уже говорилось, генератор связан с коленчатым валом двигателя посредством ременной передачи. Следовательно, чем выше обороты двигателя, тем больше оборотов совершает ротор (вращающаяся часть) генератора. Напряжение, вырабатываемое гене­ратором, напрямую зависит от оборотов его ротора. Автомобильный двигатель, работая на повышенных оборотах, вполне может «заставить» генератор вырабатывать напряжение, превышающее необходимый предел. А это приведет к выходу из строя потребителей и порче электроцепей. Для ограничения выраба­тываемого генератором напряжения и поддержания его в установленных рамках используют регулятор напряжения. Он поддерживает постоян­ное напряжение вырабатываемого генератором тока при переменной частоте вращения коленчатого вала двигателя. Современные автомобили оборудованы ма­логабаритными бесконтактными микроэлектронными регуляторами напряжения, которые либо встроены в генератор и объединены в одном узле со щеткодержателем, либо установлены отдельно в подкапотном пространстве.

Аккумуляторная батарея

Аккумуляторная батарея — источник постоянного тока, предназначенный для пуска двигателя стартером, для питания прочих потребителей при неработающем двигателе.

Аккумуляторная батарея — второй источник электроэнергии. Она превращает химическую энергию в электрическую.

Оба источника энергии обеспечивают также зажига­ние рабочей смеси в цилиндрах бензиновых и газовых двигателей, т.е. работу систем зажигания этих двига­телей.

Источники электроэнергии связаны с потребителя­ми проводами. На автомобилях применяется однопроводная система, при которой положительные полюса источников и потребителей, работающих только на постоянном токе, соединены между собой изолиро­ванными проводами. Отрицательные же полюса со­единяются через металлические части автомашины, называемые «массой». Применение однопроводной си­стемы упрощает схему электрооборудования и позво­ляет существенно сэкономить на проводах.

Большинство электрических цепей защищено плав­кими предохранителями. Перед началом эксплуата­ции своего автомобиля выясните, где расположен блок предохранителей; если имеются предохранители, расположенные вне блока, определите их местонахож­дение. Кроме того, выясните номинал предохраните­лей и имейте их в запасе. Прежде чем заменить пе­регоревший предохранитель, следует отключить «мас­су» от аккумуляторной батареи и выяснить причину выхода его из строя.

Имейте в виду, что на большинстве современных ав­томобилей при отключении аккумуляторной батарей происходит автоматическая блокировка автомагнито­лы. При последующем подключении батареи магнито­ла не будет работать до тех пор, пока вы не введете специальный код. Загляните в руководство по эксплу­атации вашей машины к выясните, так ли это. При покупке автомобиля в автосалоне вам дадут этот код, но хранить его в машине не стоит. Кодирование про­водят для того, чтобы затруднить использование по­хищенной автомобильной аудиотехники. Если вы по­купаете машину «с рук», не забудьте выяснить у прежнего хозяина номер кода магнитолы.

Электричество. Основные понятия

В этой статье предлагаю вам вспомнить базовые понятия в электрике, без которых любая работа, связанная с электричеством становится проблематичной.

Итак, любая электрическая цепь представляет собой совокупность различных устройств, образующих путь для прохождения электрического тока. Простейшая электрическая цепь может состоять из источника энергии, нагрузки и проводников.

Проводники — вещества, проводящие электрический ток. Они обладают малым удельным сопротивлением( т.е оказывают наименьшее сопротивление прохождению тока) и способны проводить электрический ток практически без потерь. Лучшими проводниками являются золото, серебро, медь и алюминий. Наибольшее распространение, вследствии дороговизны золота и серебра, получили медь и алюминий. Медь наиболее часто встречающийся проводник, в отличии от алюминия, обладающий большей устойчивостью к окислению и физическим воздействиям: изгибу, скручеванию. Недостатком меди, по сравнению с алюминием, является более высокая стоимость.

Помимо проводников существуют также диэлектрики — вещества которые обладают большим удельным сопротивлением электрическому току (т.е являются непроводящими электрический ток). К ним относятся пластмассы, дерево, текстолит и т.д

Также надо отметить и еще один тип — полупроводники. По своему удельному сопротивлению они занимают промежуточное положение между проводниками и диэлектриками. Проводимость этих материалов существенно меняется под влиянием внешних факторов. К числу полупроводников относятся многие химические элементы, но наибольшее распространение получили кремний и германий.

Источник энергии — это устройство, преобразующее механическую, химическую, тепловую и другие виды энергии в электрическую.

Нагрузка — потребитель электрической энергии, т.е любой электроприбор, который преобразовывает электрическую энергию в механическую, тепловую, химическую и т.д

Прохождение электрического тока возможно только при замкнутой цепи.

Электрическим током в электротехнике называют направленное движение заряженных частиц под действием электрического поля, создаваемого источником питания. Величина, характеризующая ток называется сила тока. Сила тока измеряется в Амперах и обозначается буквой А. Различают постоянный и переменный токи.

Постоянный ток ( DC, по-английски Direct Current) — это ток, свойства которого и направление не меняются с течением времени. Обозначается постоянный ток и напряжение в виде короткой горизонтальной черточки или двух параллельных, одна из которых штриховая.

Переменный ток (AC по-английски Alternating Current) — это ток, который изменяется по величине и направлению с течением времени. На электроприборах обозначается отрезком синусоиды « ~ ». Основными параметрами переменного тока являются период, амплитуда и частота.

Период — промежуток времени, в течение которого ток совершает одно полное колебание.

Частота — величина, обратная периоду, число периодов в секунду, измеряется в герцах (Гц).

Ток и напряжение в нагрузке увеличиваются и уменьшаются, а разница между минимальным и максимальным их значением называется амплитудой.

Измерение тока проводится амперметром, который подключается последовательно нагрузке.

Любой проводник в цепи, в зависимости от сечения, длины, материала, оказывает сопротивление прохождению электрического тока. Свойство проводника препятствовать прохождению электрического тока называют сопротивлением. Сопротивление измеряется в Омах (Ом).

Разность потенциалов на концах источника питания называется напряжением. Напряжение измеряют в Вольтах и обозначают буквой В (V). В трехфазной электрической сети различают такие понятия, как линейное и фазное напряжения. Линейное напряжение ( или иначе межфазное) — это напряжение между двумя фазными проводами (380V). Фазное напряжение — это напряжение между нулевым проводом и одним из фазных (220V). Измеряется напряжение вольтметром, который подключается параллельно нагрузке.

Еще одним важным понятием в электротехнике является понятие мощности. Мощность источника характеризует скорость передачи или преобразования электроэнергии. Мощность измеряется в Ваттах (Вт, W).

Суммарная мощность всех подключенных потребителей равна сумме потребляемых мощностей каждым потребителем. Робщ = Р1+Р2+…Рn

Различают понятия активной и реактивной мощности. P – активная мощность (эффективная), связана с той электрической энергией, которая может быть преобразована в другие виды энергии – тепловую, световую, механическую и др., измеряется в ваттах (Вт), представляет собой полезную мощность, которую можно использовать для выполнения работы.

P = IUcosф – для однофазной цепи, P = √3IUcosф – для трехфазной цепи, P = U*I — в цепи, где есть только активное сопротивление.

Q – реактивная мощность, связана с обменом электрической энергией между источником и потребителем, измеряется в вольт-амперах реактивных (вар), когда среднее значение мощности за период равно нулю, активная мощность равна нулю, энергия накопленная магнитным полем индуктивности, возвращается назад к источнику, ток в цепи не совершает работы, реактивный ток бесполезно загружает источники энергии и провода линии передач. Источниками реактивной энергии могут являться элементы, обладающие индуктивностью — электродвигатели, трансформаторы. Для того, чтобы уменьшить реактивную мощность на зажимах потребителей подключают конденсаторы (последовательно или параллельно).

Q = IUsinф – для однофазной цепи, Q = √3IUsinф – для трехфазной цепи

Сдвиг по фазе между током и напряжением обозначается углом φ. Коэффициент мощности — это соотношение активной мощности к полной, величина cosф равная углу сдвига фаз между напряжением и током. Чем выше cos φ, тем меньше тока требуется для преобразования электроэнергии в другие виды энергии. Это приводит к уменьшению потерь электроэнергии, ее экономии.

На этом пока все, а в следующей части познакомимся с основными законами электротехники, которые необходимо знать любому человеку, связанному с электричеством.

Поделиться в соц. сетях

Производство электроэнергии

Среди генераторов электроэнергии наиболее распространены электромеханические генераторы переменного тока

. Они преобразуют механическую энергию вращения ротора в энергию индукционного переменного тока, возникающего благодаря явлению электромагнитной индукции.

На рис. 1 проиллюстрирована основная идея генератора переменного тока: проводящая рамка (называемая якорем

) вращается в магнитном поле.

Рис.1. Схема генератора переменного тока

Магнитный поток сквозь рамку меняется со временем и порождает ЭДС индукции, которая приводит к возникновению индукционного тока в рамке. С помощью специальных приспособлений (колец и щёток) переменный ток передаётся из рамки во внешнюю цепь.

Если рамка вращается в однородном магнитном поле с постоянной угловой скоростью , то возникающий переменный ток будет синусоидальным. Покажем это.

Выберем направление вектора нормали к плоскости рамки. Вектор , таким образом, вращается вместе с рамкой. Направление обхода рамки считается положительным, если с конца вектора этот обход видится против часовой стрелки.

Напомним, что ток считается положительным, если он течёт в положительном направлении (и отрицательным в противном случае). ЭДС индукции считается положительной, если она создаёт ток в положительном направлении (и отрицательной в противном случае).

Предположим, что в начальный момент времени векторы и сонаправлены. За время рамка повернётся на угол . Магнитный поток через рамку в момент времени равен:

(1)

где — площадь рамки. Дифференцируя по времени, находим ЭДС индукции:

(2)

Если сопротивление рамки равно , то в ней возникает ток:

(3)

Как видим, ток действительно меняется по гармоническому закону, то есть является синусоидальным.

В реальных генераторах переменного тока рамка содержит не один виток, как в нашей схеме, а большое число витков. Это позволяет увеличить в раз ЭДС индукции в рамке. Почему?

Объяснить это несложно. В самом деле, магнитный поток через каждый виток площади по-прежнему определяется выражением (1), так что ЭДС индукции в одном витке согласно формуле (2) равна: . Все эти ЭДС индукции, возникающие в каждом витке, складываются друг с другом, и суммарная ЭДС в рамке окажется равной:

Сила тока в рамке:

где есть по-прежнему сопротивление рамки.

Кроме того, рамку снабжают железным (или стальным) сердечником. Железо многократно усиливает магнитное поле внутри себя, и поэтому наличие сердечника позволяет увеличить магнитный поток сквозь рамку в сотни и даже тысячи раз. Как следует из формул (2) и (3), ЭДС индукции и ток в рамке увеличатся во столько же раз.

Электрический ток и его использование

Сейчас можно с уверенностью сказать, что самым главным достижением человечества является открытие электрического тока и его использование.

Электрическая энергия имеет огромное значение, как в жизни каждого отдельно взятого человека, так и в развитии современного общества в целом.

На сегодняшний день сложно представить нашу жизнь без электричества. Ведь именно оно освещает наше жильё и улицы, приводит в движение трамваи, троллейбусы и поезда.

Да, и все бытовые приборы, которыми мы пользуемся дома, работают при помощи электрической энергии.

Работа современных средств связи, без которых мы не представляем свою жизнь — телефона, радио, телевидения, интернета — также основана на использовании электрической энергии.

Электроэнергия поселилась во всех сферах деятельности человека. Без электричества не могут обойтись ни промышленность, ни сельское хозяйство, ни даже наука.

Без него невозможно было бы развитие кибернетики, вычислительной и космической техники.

Но, важно понимать, что электрическая энергия, которую мы используем, не существует в природе в готовом для потребления виде. Её нельзя добыть, как полезное ископаемое – нефть или уголь.

Так откуда же она берётся?

Чтобы любая энергия стала полезной человеку, он должен был научиться с ней обращаться, это значит, должен был научиться преобразовывать одни виды энергии в другие.

Человечество справилось с этой нелёгкой задачей. Люди стали получать электрическую энергию, которая так необходима для производственных и бытовых нужд, из других видов энергии: механической, тепловой, световой, химической.

Преобразования энергии различных видов в электрическую энергию происходят на электростанциях. Устройство, которое преобразует какую-либо энергию в электрическую, называют источником

.

Основную часть электрической энергии люди получают преобразованием механической энергии при помощи специальных электромеханических машин.

Эти машины называются – электрогенераторы

. В электрогенераторе механическая энергия турбины преобразуется в электрическую энергию.
Турбина
– это такое вращающееся колесо специальной конструкции. Так, например, на гидроэлектростанциях турбина вращается за счёт энергии падающей воды.

На тепловых электростанциях турбина вращается с помощью энергии движения пара.

А на ветряных электростанциях – за счёт энергии ветра.

На космических станциях источником электрической энергии являются фотоэлементы. Именно они преобразуют солнечную энергию в электрическую.

Помимо стационарных источников существуют переносные источники электрической энергии

. Это гальванические элементы, различные аккумуляторы, а также батареи из них.

В переносных источниках электрическая энергия получается за счёт химического процесса взаимодействия разнородных металлов с особым веществом – электролитом. Существуют ещё и малогабаритные механические генераторы, которые работают за счёт мускульной силы рук или ног человека. Примером малогабаритного механического генератора может послужить генератор для велосипедной фары.

Давайте попробуем разобраться, как же происходит процесс передачи электрической энергии.

Вообще, первые сведения об электричестве появились много столетий назад и относились они тогда к электрическим зарядам, которые получались посредством трения. Ещё в Древней Греции было установлено, что если янтарь натереть шерстяной тканью, то он приобретёт способность притягивать лёгкие предметы.

Кстати, по-гречески слово «янтарь» звучит как «электрон». От этого слова и произошёл термин «электричество»

. Затем люди выяснили, что точно такими же свойствами обладают и многие другие вещества. Тогда такие вещества были названы
наэлектризованными
. Сейчас же мы говорим, что на телах в таком состоянии имеются
электрические заряды
, а сами же тела называем
заряженными
.

Итак, электрическая энергия передаётся при помощи потока мельчайших заряженных частиц.

Эти заряженные частицы всегда возникают при тесном контакте различных веществ. В некоторых телах электрические заряды могут свободно перемещаться между различными частями, в других же это невозможно. В первом случае вещества называют проводниками

, во втором –
диэлектриками
или
изоляторами
.

Проводниками являются все металлы, растворы солей, кислот, включая обычную питьевую воду.

Примерами изоляторов могут служить стекло, резина, различные пластмассы.

Следует знать, что деление веществ на проводники и диэлектрики весьма условно. Так как все вещества в большей или меньшей степени проводят электричество.

В природе различают два вида электрических зарядов. Условно их называют положительными и отрицательными.

Вокруг каждого из этих зарядов существует электрическое поле, за счёт которого одноимённые заряды отталкиваются друг от друга, а разноимённые притягиваются друг к другу. В случае взаимодействия различных веществ разноимённые заряды будут стремиться перейти из одного вещества в другое. Перемещение этих заряженных частиц и будет представлять собой электрический ток.

Вообще, электрическим током

называется упорядоченное (направленное) движение заряженных частиц под действием электрического поля.

Исторически за направление электрического тока было принято движение положительных зарядов, которые перемещаются от положительного полюса источника к отрицательному по проводнику, подключённому к полюсам.

Количество зарядов, прошедших за единицу времени через поперечное сечение проводника, называется силой тока

.

Выражается эта зависимость следующей формулой: , где – сила тока, – количество зарядов, – время.

Единицу силы тока называют ампером

, в честь французского учёного Андре Ампера.

Электропитание всех электрических устройств осуществляется постоянным

и
переменнымтоком
. Электрический ток, направление и значение которого не меняются со временем, называют
постоянным
. А электрический ток, направление и значение которого способны периодически изменяться, называют
переменным
.

Электропитание большинства электротехнических устройств осуществляется переменным током.

А теперь давайте рассмотрим особенности протекания электрического тока в различных средах и его применение.

Итак, при рассмотрении вопроса протекания электрического тока надо учитывать наличие различных носителей тока – элементарных зарядов – характерных для данного физического состояния вещества. Само по себе вещество может быть твёрдым, жидким или газообразным.

В металлических проводниках ток образуется за счёт движения электронов, имеющих отрицательный заряд. Вообще, все металлы являются проводниками тока. Применение тока в металлах используется для передачи электроэнергии на расстояние.

Из жидкостей электрический ток проводят только электролиты – растворы солей, кислот и щелочей. Прохождение постоянного электрического тока через жидкие среды сопровождается химическими реакциями. Это свойство широко применяют в аккумуляторах, в электрометаллургии для получения алюминия и бокситов, а также при электрохимической обработке материалов и очистке металлов от примесей.

Электрический ток в газовой среде вызывает свечение газа. На основе этого явления работают лампы дневного света, лазеры, прожекторы.

Устройства, которые преобразуют электрическую энергию в другие виды энергии – свет, тепло, механическую и химическую энергию, – называют приёмниками

или
потребителями электрической энергии
, а в электротехнике –
нагрузкой
.

Для того чтобы электрическое устройство (или нагрузка) работало, его нужно соединить с полюсами источника тока. На практике источник с нагрузкой часто соединяют с помощью дополнительных проводников, в быту и электротехнике их называют проводами.

То, о чём мы сейчас с вами говорили: источник электрической энергии, нагрузка и соединительные провода – всё вместе это называется электрической цепью

.

Итоги урока

На этом уроке мы говорили об электрическом токе и его использовании. Рассмотрели различные источники электроэнергии. Разобрались, как происходит процесс передачи электрической энергии. А также рассмотрели особенности протекания электрического тока в различных средах и его применение.

Ссылка на основную публикацию